
IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5794 477

Floating Point Parallel Processing Multiplier

Based RISC (MIPS) Processor

Omkar A. Shastri
1
, Asst. Prof. Shubhangini Ugale

2
, Asst. Prof. Vipin Bhure

3

G.H.R.A.E.T, Nagpur1, 2, 3

Abstract: This paper proposes a design of high speed 32 bit RISC processor. The processor consists of blocks namely

Instruction Fetch block, Instruction Decode block and Execution block. The ALU in the execution block comprises of a

single precision floating point multiplier designed in a parallel architecture thus improving the speed and accuracy of

the execution. Furthermore the power gating technique is used which switch off the power at the time when processor

execution is not required. All the blocks are designed using VHDL hardware description language.

Keywords: RISC, Floating point multiplier, Power gating, VHDL.

I. INTRODUCTION

Today microprocessors can be found in almost every
digital system. The decision to include a microprocessor in

a design is often very clear because it transforms the

design effort from a logic design into a software design.

Microprocessors are used in variety of electronic gadget

such as computers, laptops, cell phones etc. In

conventional approach speed of the processor is less. So

there is a need of designing a high speed and high

accuracy processors. John Cocke originated the RISC

concept in 1974 by proving that about 20% of the

instructions in a computer did 80% of the work. This paper

describes a 32-bit RISC processor designed for embedded
and portable application. The features of this processor are

it consumes less power and it operates in high speed.

Other features of RISC are Uniform instruction format,

identical general purpose registers, and Simple addressing

modes. RISC stands for Reduced Instruction Set

Computer. Today RISC is considered to be the basis for

designing high performance processors. The RISC

processor have reduced number of Instructions, fixed

instruction length, more general purpose register which are

organized into register file, load-store architecture and

simplified addressing modes which makes individual

instruction execute faster, achieve a net gain in
performance. The RISC processor requires less number of

transistors hence the area required on the chip is less as

compared to CISC. Only the load-store instruction access

memory, no arithmetic or logic or IO instruction operates

directly on memory content which is the key to single

clock execution of instructions. It is easier to produces

powerful optimized compilers since there are fewer

instructions in the instruction set.

II. INSTRUCTION SET ARCHITECTURE

A. RISC (MIPS) Instruction Set

As proposed Processor is 32Bit MIPS RISC Processor, all

the instructions are 32Bit in length which uses the four

different types of formats. Instruction formats vary from

instruction to instruction. The design has 32 general
purpose registers each 32Bit. It supports addressing modes

such as the Register addressing mode, immediate

addressing mode, Register indirect addressing,

Implicit/Inherent/Implied addressing and direct addressing

mode.

B. RISC (MIPS) Instruction Format

The RISC (MIPS) processor consists of different

instruction set format for certain instructions which are

accessed using a control unit which consists of different

control signal that decides the type of instruction. The
format below shows the standard format for the

instructions.

Figure 1 Instruction set Format

The different instruction formats are as shown below:

a) R-Type (Register Format)

Figure 2 R-Type Instructions Format

Figure 3 shows R-Type instruction format. The last 6 bits

represents the op-code. Next 15 bits represents 3 registers

Rs, Rt and Rd. Rs and Rt are source registers, Rd is the

destination registers. The next 5 bits represents shift

amount which points to the number of bits to be shifted.

Last 6 bits is function field that points to the function or

the operation to be performed on the two source register

value.

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5794 478

b) I-Type (Immediate Format)

Figure 3.I-Type Instructions Format

Figure 4 shows I-Type instruction format. Similar to R
type, first 6 bits represents the op-code and next 10 bits

represents Rs, Rt respectively were Rs is source register

and Rt is source register for store and destination register

for load operation. The remaining 16Bits represents field

called as Address Value field of used for immediate data

which must be sign extended from 16 to 32 bits simply by

adding the sign-bit 16 times to the original value.

c) J-Type (Jump Format)

Figure 4 J-Type Instructions Format

Figure 5 shows J-Type instruction format. First 5 bits of

this instruction format represent the type of operation i.e.

jump address operation to be performed. The remaining 26

bits represents the branch offset in 2's complement format.

These 26 bits are added to the value of the PC to obtain the

jump target address.

III. DATAFLOW

Data flow is achieved using data path of the hardware,

which defines data flow. There is no clear difference

between control and data. Operation code, operand,

memory address, memory value, register address,

register value, jump destination address and content are

usually included in data, but control part consist of control

signal of unit, time control signal and interrupt control

signal, and these signals are not defined clearly

a) R-Format Data Path

Figure 5.R Format Instruction Data Path

In R-Format data path, Instruction is fetched from the

memory in accordance with the PC value. The instruction

is then decoded to obtain the memory address of the two

registers consisting of the values on which arithmetic

operation is to be performed. The Arithmetic operation is

executed with the help of ALU. The result of the operation

is stored back into one of the registers.

b) RI-Format Data Path

Figure 6.RI-Format Instruction Data Path

RI-Format data path is shown in Figure 7. It is similar to

R-Format data path. The only difference is that the target
register of R format instruction is replaced by immediate

value of RI-Format data path. The immediate is 32-bit sign

extended value which is fed to ALU as the second

operand. Finally, the result of the ALU is written back to

the register file.

c) Load Word Data Path

Figure 7.Load Word Data Path (lw)

The load word data path is shown in figure8. It is similar

to the I type data path only the difference is that the ALU

result which is an memory address is loaded into memory

and the value stored at that address is fetched and stored in
one of the register whose address or value is specified in

the instruction.

d) Store word data path

Figure9 shows the Store Word data path. The load word

and store word has a similar data path as they both have to

access the data memory. In store word the ALU result is

the memory address in the data memory where the

specified register value is to be store through second

output port of the register file.

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5794 479

Figure 8.Store Word Data Path (sw)

IV. ARCHITECTURE OF RISC

Figure10 shows the architecture of RISC (MISC)

processor. The processor mainly consists of the instruction
fetch module, instruction decode module, execution

module, memory module and write back module. The

proposed architecture consists of 3stage: Instruction fetch

stage, instruction decode stage and the execute stage. The

execution stage consists of a FPU in which the floating

point multiplier is designed using a parallel processing

architecture thus increasing the speed of most time

consuming element. The description of processors logic

blocks are as follows:

Figure 9.Architecture of RISC processor

a) Instruction fetch block

Program Counter (PC) is used to fetch the instruction from

the Instruction Memory and is stored in the Instruction

Register (IF/ID) at the next positive clock. This stage has
various modules like Instruction Memory, which holds the

instructions needed. PC holds the address of the current

instruction, which is used as address to the Instruction

Memory. The instructions read out from the Instruction

memory are stored in the Instruction Register.

b) Instruction Decode:

In this stage, decodes the instructions sent from Instruction

register. Based on the instructions, it reads the operands
required for register file. Out of 32-bits, 16 go to sign

extend, where those 16 bits are extended to 32-bits. The

register file module gives out the value of 2 registers,

which are sent to ALU in the EX stage.

c) Execution:

All the instructions are executed in this stage. All ALU

operations like arithmetic and logical operations, take

place in this stage. It performs operations on the data sent

from ID stage. This stage also has left shift by 2 and an

adder, for beq operation. The result from ALU is sent to

register.

E. Floating Point Unit

A floating point (FPU), also known as a math co-processor

or numeric processor is a specialized co-processor that
manipulates numbers more quickly than the basic

microprocessor circuitry. The FPU does this by means of

instructions that focus entirely on large mathematical

operations. Floating point computational logic has long

been a mandatory component of high performance

computer systems as well as embedded systems and

mobile applications. The advantage of floating point

representation over fixed point and integer representation

is that it can support a much wider range of values. In the

present work 32-bit FPU is used, which supports single

precision IEEE-754 format. The IEEE-754 standard

defines a single as 1 bit for sign, 8 bits for exponent and
23 bits for mantissa. The 32 bit single precision floating

point unit has been proposed in this paper which performs

certain operations like addition, subtraction, multiplication

and division.

FP Add: In the module FP Add, the inputs operands are

separated into their mantissa and exponent components.

Then the exponents are compared and the smaller number

is shifted right until it matches the larger one. Then the

two mantissas are added and then the number is

normalized by appending the sign bit, exponent and the

obtained mantissa.

FP Sub: The input variables are separated into two

components namely mantissa and exponent. Subtraction is

similar to that of addition such that the mantissa of the

smaller exponent is shifted to the right before performing

the subtraction.

FP Mul: Firstly the two operands are converted into

floating point representation number. Check if one of the

operand is zero. If not then sign is computed by EX-

ORING both sign bit. The two operands mantissa are

multiplied and the exponents are added which are then

subtracted from the biased exponent value.

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5794 480

FP Div: Division process is similar to the multiplication

only the difference is that the mantissas are divided and

the sum of the two exponents is added to the biased

exponent value.

D) Memory Access:

In this stage, memory access stage's purpose is to read

from and write to the data memory. The control signals

passed determines which of the operations to do. The

output of the memory is written into the register using the

WB control.

V. RESULTS AND COMPARISON

A) RTL view

Figure 10.RTL View of MIPS RISC Processor

Figure 16 shows the RTL (Register Transfer Logic) view

of 32Bit MIPS RISC Processor. It comprises of Instruction

fetch unit, Instruction decoder unit, execution unit and a

control unit. Function of instruction fetch unit is to fetch

opcode from memory using PC and give it to instruction

decoder unit. Instruction decoder unit receive the opcode

and depending on the opcode, instruction format is

selected and then it is fed to execution unit for execution

of the instruction. Function of execution unit is to perform

the specific operation according to the opcode specified in

ALU control unit. It consists of Floating point ALU.

B) Simulation Result

Figure11. Instruction Fetch and Decode Simulation result

The figure12 shows the simulation result of instruction

fetch and instruction decode unit. Firstly the instruction is
fetched and stored into instruction register and then it is

decoded to get values of the two register to perform the

arithmetic operation.

Figure12. Simulation result of R type instruction format

The figure13 shows the simulation result of R type

instruction. The two registers reg_a and reg_b are obtained

through the instruction fetch and decoding unit and then

ALU performs operation specified by the opcodes.

Figure 13 RI type instruction format simulation result

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5794 481

The figure14 shows the RI type simulation result. The

immidiate data from the instruction is sign extended and

given as the second operand to the ALU. The first operand

is the register value whose default value is zero thus

addition gives the address at the ALU output.

Figure 14. FPU simulation result

The figure15 shows the simulation result of Floating point

unit (FPU). The simulation shows the addition,

subtraction, multiplication and division of the two

operands

c) Comparison Table

Table 1 Comparison

VI. CONCLUSION

In this research, we use VHDL to describe the system and

uses top-down design method in which initially we design

Instruction Fetch unit, then Decoder unit, then Execution

unit, finally write back unit. The hierarchy of the design is

very clear. It is easy to edit and debug. The modules

synthesized and simulated are MIPS Instruction format,

Floating point ALU, MIPS Instructions Set, MIPS

Registers, Operation select. The design has been

synthesized and simulated using Xilinx 14.7 ISE
Simulator. All the goals were achieved and simulation

shows that processor is working perfectly. Proposed 32Bit

MIPS RISC Processor synthesis values are compared with

the conventional one. So, the proposed processor can be

called as a high performance processor.

REFERENCES

[1] Mr. S. P. Ritpurkar, Prof. M. N. Thakare, Prof. G. D. Korde

“Synthesis and Simulation of a 32Bit MIPS RISC Processor using

VHDL” IEEE ICAETR – 2014

[2] Samiappa Sakthikumaran1, S. Salivahanan, V. S. Kanchana

Bhaaskaran “16-Bit RISC Processor Design for Convolution

Application”. IEEE-ICRTIT 2011

[3] Neenu Joseph, Sabarinath.S, Sankarapandiammal K “FPGA based

Implementation of High Performance Architectural level Low

Power 32-bit RISC Core” IEEE(2009 International Conference on

Advances in Recent Technologies in Communication and

Computing)

[4] Pravin S. Mane, Indra Gupta, M. K. Vasantha “Implementation of

RISC Processor on FPGA” 2006 IEEE

[5] Naresh Grover, M.K.Soni “Design of FPGA based 32-bit Floating

Point Arithmetic Unit and verification of its VHDL code using

MATLAB” I.J. Information Engineering and Electronic Business,

2014, 1, 1-14

[6] Preethi Sudha Gollamudi, M. Kamaraju “Design Of High

Performance IEEE- 754 Single Precision (32 bit) Floating Point

Adder Using VHDL” International Journal of Engineering Research

& Technology (IJERT) Vol. 2 Issue 7, July – 2013

[7] Jinde Vijay Kumar, Boya Nagaraju, Chinthakunta Swapna and

Thogata Ramanjappa “Design and Development of FPGA Based

Low Power Pipelined 64-Bit RISC Processor with Double Precision

Floating Point Unit” International Conference on Communication

and Signal Processing, April 3-5, 2014, India

[8] Mrs. Rupali S. Balpande, Mrs. Rashmi S. Keote “Design of FPGA

based InstructionFetch & Decode Module of 32-bit RISC (MIPS)

Processor” 2011 International Conference on Communication

Systems and Network Technologies

[9] Mohit N. Topiwala, N. Saraswathi “Implementation of a 32-bit

MIPS Based RISC Processor using Cadence” 2014 IEEE

International Conference on Advanced Communication Control and

Computing Technologies (ICACCCT)

[10] Priyanka Trivedi, Rajan Prasad Tripathi “Design & Analysis of 16

bit RISC Processor Using low Power Pipelining” International

Conference on Computing, Communication and Automation

(ICCCA2015).

